444

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLuME 31

The Meridional Variation of the Eddy Heat Fluxes by Baroclinic
Waves and Their Parameterization

PrTER H. STONE

Institule for Space Studies, Goddard Space Flight Center, NASA, New York, N. Y. 10025 and
Dept. of Meteorology, Massachuselts Institute of Technology, Cambridge 02139

(Manuscript received 10 September 1973)

ABSTRACT

The meridional and vertical eddy fluxes of sensible heat produced by small-amplitude growing baroclinic
waves are calculated using solutions to the two-level model with horizontal shear in the mean flow. The
results show that the fluxes are primarily dependent on the local baroclinicity, i.e., the local value of the
isentropic slopes in the mean state. Where the slope exceeds the critical value, the transports are poleward
and upward ; where the slope is less than the critical value, the transports are equatorward and downward.

These results are used to improve an earlier parameterization of the tropospheric eddy fluxes of sensible
heat based on Eady’s model. Comparisons with observations show that the improved parameterization repro-
duces the observed magnitude and sign of the eddy fluxes and their vertical variations and seasonal changes,
but the maximum in the poleward flux is too near the equator. The corresponding parameterizations for the
eddy coefficients describing the transport of any conserved quantity are given.

1. Introduction

One of the most important properties of baroclinic
waves is their transport of heat poleward and upward.
Observational studies show that these transports
account for a substantial part of the atmosphere’s total
heat transport (Palmén and Newton, 1969, Chap. 2)
and theoretical studies show that they are of crucial
importance in determining the atmosphere’s thermal
structure (Stone, 1972). In addition, they help drive
the mean meridional circulations (Kuo, 1956). Conse-
quently, all models of the atmosphere must include
these fluxes, and in particular one- and two-dimensional
models must include them in parameterized form
(Sellers, 1969; Kurihura, 1970; Wiin-Nielsen, 1970;
Saltzman and Vernekar, 1971). In fact, Green (1970)
has shown that a successful parameterization of the
eddy heat flux by baroclinic waves is the key to the
parameterization of many of the other large-scale eddy
fluxes in the troposphere.

So far the work done on parameterizing these eddy
heat fluxes has concentrated on determining how the
mean flux depends on basic parameters such as the
mean horizontal temperature gradient (Clapp, 1970;
Green, 1970; Stone, 1972). However, accurate repre-
sentations for the meridional variations of the eddy
fluxes are also needed. One way to obtain useful informa-
tion for parameterizing these meridional variations is
to calculate the eddy fluxes rigorously from a realistic
model of small-amplitude, growing baroclinic waves.
In Sections 2—4 we present such a calculation. Section 2
contains a description of the model we use, and Sections

3 and 4 contain solutions for the meridional and
vertical eddy fluxes, respectively. In Section 5 we use
these solutions to derive an improved parameterization
for the eddy fluxes and compare it with the observations.

2. The model

The details of the model we will use have already
been described (Stone, 1969). This model is the simplest
model of baroclinic instability which allows the me-
ridional variations of the zonal wind to be included in
a realistic way. It starts from Charney and Phillips’
(1953) two-level model. The basic equation for the
pressure perturbation due to the baroclinic wave in this
model is the linearized form of the vorticity equation.
In dimensional form this equation may be written as

d*11; d*
(ﬁ—0)< —k2H3>+<b ———+4‘12)H3
dy* ay?

= —4(n—c)(I,—1I;), (2.1)

&I,
—c(-;—z—kznl>+(b—4a)n1=4a(n3~r11). (2.2)
y

Subscripts 1 and 3 refer, respectively, to the lower and
upper levels, IT is the pressure perturbation, %(y) the
unperturbed zonal flow in the upper layer (the value
in the lower layer being taken as zero), 4 the meridional
coordinate, ¢ the complex phase speed, and k£ the
longitudinal wavenumber; b is a dimensionless param-
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eter defined as

.2
b=§——, (2.3)

%o

where 8=2Q cos¢/R, Q2 is the earth’s rotation rate, ¢
the latitude, R the earth’s radius, %, the magnitude of
the unperturbed zonal flow in the upper layer, and L
the radius of deformation (assumed to be constant)
[# and ¢ are measured in units of #,, ¥ in units of L,
and % in units of 1/L]. The boundary conditions are
that the perturbation goes to zero at the equator and
the pole, 1.e.,

xR
H3=H1=0 at y=:l:yoE:l:'— —" (24)
4 L

Egs. (2.1) and (2.2) may be simplified by assuming
that the scale of the unperturbed zonal flow is of order
R and that

1 4L
e=—=—-<1.

N . (2.5)
0 ™

This assumption allows the y-dependence of Egs. (2.1)
and (2.2) to be treated by “two-timing” techniques,
with the two y-scales being L and R (see Stone, 1969).
The solution to Egs. (2.1) and (2.2), ignoring terms of
order e, is then

1
3= iny, 2.6
IT [}\(1+g2)] sing (2.6)
H1=gH3, (27)
where
_Jl412(y)+bL14d(y)—b .
“l2ag— 2 ¢
1 /4a(y)+b da—b\: i}
HC )] e
k2 4‘ 2
gm 1 D N 2.9)
4 Aaly)y—c] 4
+y
n= / M) dy. (2.10)

The eigenvalue ¢ is the solution of the integral equation

+¥o
/ A(y,¢,k,b)dy=mm, (2.11)

—¥

where m is the meridional wavenumber. From these
formulas one can explicitly calculate the eigenvalue
and eigenfunctions for any #(y), ¢, and 5<3.5, and
determine which eigenvalue, as specified by % and m,
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has the largest growth rate. A number of such solutions
for 4<5<3.5, i.e., near-neutral stability, have been
described (Stone, 1969) and we will use these same
solutions to calculate the heat fluxes that accompany
the most rapidly growing modes.

For this purpose we need to relate the meridional and
vertical velocities, » and w, respectively, and the po-
tential temperature 6, to II; and II;. The relevant
linearized equations for the two-level model are given
by Charney and Phillips (1953) and Phillips (1954). In
dimensionless form they are

V2= %1k (H1+H3), (212)
6,=2(I;—1Iy), (2.13)
‘ZU2=’I:k (c—-—%ﬂ)@—i—Zﬁvg. (2.14)

Here the subscript 2 refers to a level intermediate
between levels 1 and 3. Eq. (2.12) follows from the
assumption of geostrophic balance, (2.13) from hydro-
static equilibrium, and (2.14) from adiabatic motion.
The zonally averaged meridional and vertical eddy
fluxes of heat (actually of sensible heat plus potential
energy) at level 2 are proportional to

Bv=2 Refs*, (2.15)

fw=1 Rebyws*. (2.16)

Since the eddy flux of potential energy is small (Oort
and Rasmusson, 1971), the 8 fluxes are almost the
same as the sensible heat fluxes, and we will refer to
them as such. Substituting Eqgs. (2.12) to (2.14) into
(2.15) and (2.16), we obtain

b;= k(HsHl*)«;,
Gw= —2ke;| I — 11y | >+ 24,

(2.17)
(2.18)

where an asterisk denotes the complex conjugate, the
subscript ¢ the imaginary part, and a bar the zonal
average.

Phillips (1954) has discussed the solution of Egs. (2.1)
and (2.2) subject to boundary conditions (2.4) when
there is no meridional shear in the unperturbed zonal
flow, i.e., when #Z=1. In this case both of the eddy
transports are positive everywhere, their latitude de-
pendence being given by {sin(mx/2)[ (y/y0)-+1]}* and
m=1 for the most unstable mode. Also, we note that
for any #(y), the two fluxes are proportional to each
other if we are sufficiently near neutral stability, i.e.,

6w= 246y, when ¢;=0. (2.19)

3. The meridional eddy heat flux

Figs. 1-7 illustrate 2 calculated from Eq. (2.17) using
the most unstable modes for different choices of % and 5.
[The eigenvalues and eigenfunctions may be found in
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Frc. 1. Meridional heat transport vs latitude using the most unstable mode (m=3),
for 5=3.8, i=1—1a%

Section 4 of Stone (1969).7 All the calculations are for
€~0.2, corresponding to L= 1000 km. For convenience
in plotting the results a normalized independent
variable,

a=— (3.1)

Yo

has been used, and 18 was normalized to its maximum
value. .
Figs. 1 and 2 show how 10 depends on 7(y). In Fig. 1,
a=1-12, b=3.8; in Fig. 2, #=1—3a? b=3.8. Com-
paring these figures with 9 for the most unstable mode

Ll -]

?

+1.0

when 7= 1 we see that the more concentrated the zonal
jet is, the more concentrated the region of poleward
heat transport near the center of the jet becomes, with
the transport under the wings of the jet becoming
equatorward.

For the case illustrated in Fig. 2 the mode m=4 was
almost as unstable as the mode m=3. Fig. 2 shows 0
for m=3, while Fig. 3 shows it for m=4. The regions of
poleward and equatorward transport are virtually
identical for the two modes. The transport does just
go to zero at the center of the jet for m=4, as it would
for any even mode. This property is an artifact of
choosing 7 to be perfectly symmetric about y=0. For

-0.5+

F16. 2. As in Fig. 1, but for #=1—3a%
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Fic. 3. Asin Fig. 1, but for 4=1—40? and m=4.

any nonsymmetric jet the transport would be positive
at the center of the jet.

Figs. 4-6 illustrate the dependence of v6 on & (or
equivalently #). In all three figures %= (14a?)~!, and
the values of b were 3.8, 3.65 and 3.5, respectively.

In the case b=3.8, the mode m=4 was slightly more
unstable than the mode m =3, but the latter mode was
used to compute 96 in order to simplify the comparison
with the other two cases where m=3 was the most un-
stable one. Figs. 4-6 show that the regions with pole-
ward heat transport become larger as one moves
away from neutral stability.

Fig. 7 illustrates 10 when # consists of two jets,
symmetric about «=0, with maxima #(&3)=1,
minima %(d=1)=0.75, and %(0)=0.8. [The detailed
form of this in profile is given in Fig. 22 of Stone
(1969).] This figure emphasizes the most important
result of our calculations of 170—, i.e., in general, the heat
transport is poleward near the maxima in the zonal
wind and is equatorward near the minima. In all
cases the infegrated flux for —1<a< +1 is poleward.
Also, we note that the zonal average of v. is identically
zero for geostrophic motion, and therefore any con-
tribution to the meridional heat transport by the mean

+0.5 +1,0

-0.5¢1

Fi1e. 4. Asin Fig. 1,

but for #= (1}a?)"1,
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Fic. 5. As in Fig. 1, but for 7= (14 and b=3.65.

motions generated by baroclinic waves is small com-
pared to the eddy transport.

The equatorward transport of heat by eddies near
minima in # is also apparent in observations of the
atmosphere. For example, Oort and Rasmusson’s data
(1971, Fig. 23) show that the eddy transport between
the equator and about 20N is typically toward the
equator. The magnitude of this transport is not as
large as in Figs. 1-7, because the real atmosphere is a
lot farther from neutral stability than the solutions
used in our calculations (cf. the trend in Figs. 4-6).
Observations north of 75N are not adequate for deter-

mining if equatorward transports also occur in polar
regions although there are some hints of such a transport
(Oort and Rasmusson, 1971, Fig. E4). Some numerical
general circulation models do show equatorward eddy
transports in polar regions (Holloway and Manabe,
1971, Fig. 27). Such a transport would supply a positive
feedback to the mean temperature structure in polar
regions, in contrast to the negative feedback in mid-
latitudes. The feedback in the eddy fluxes is very strong
(Stone, 1973) and a positive feedback in polar re-
glons could have important effects in climatological -
calculations. ‘

-0.5 T

F1G. 6+ As in Fig. 1, but for #= (1+a?)~* and 4=3.5.
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Fic. 7. As in Fig. 1, except that 4(y) consists of two weak jets, symmetrically placed at a= 3.

These equatorward transports can be easily ex-
plained. From Egs. (2.6), (2.7) and (2.17) we have

2

siny :
. (3.2)

A1+g) R

Thus, the sign of 28 is determined by g. Since g depends
on the local value of u, i.e., the local baroclinicity, the

direction of fv is completely determined by the local
value of 4. This is characteristic of problems in which
a “two-timing” approximation is appropriate; the cor-
relations are primarily dependent on the modulations
associated with the slowly varying functions (in this
case %) rather than those associated with the rapidly
varying functions (in this case II; and II;). The same
behavior occurs in the eddy momentum flux (Stone,
1969). Thus, one would anticipate that to a first
approximation the heat flux is equatorward in regions
where the local criterion for stability is satisfied, and
poleward in regions where it is not. If we define ¥’ to
be the local value of b, i.e.,

%= —kg,‘

BL? b
b= =— 3.3)
ugit(e) o)

then, since the critical value for instability is 6=4.0
(Stone, 1969), the locations where the flux changes
sign, ., will be given by

b

i) =—.

(3.4)

This formula should be accurate as long as e<1.
Fig. 8 shows how well the simple formula (3.4) agrees
with the detailed calculation of the fluxes from Egs.

(2.6)-(2.17). The solid lines give the values of @, pre-
dicted by Eq. (3.4) and the X’s indicate the actual

values from the calculations of v6. The agreement is

Qe
(o)
.8 4
.4 A
0 T T >
o} 2 .4 6 8 -
8
(b}
Qe
.84
.4
o ~r T T T
4.0 3.8 3.6 3.4
-~ b

F1c. 8. Comparison of predicted and actual location of the
zeros in the fluxes. The curves give the predicted location [Eq.

(3.4)], the X’s the actual locations for v, and the O’s the actual
locations for 6w, See text for explanation.
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F16. 9. Vertical heat transport vs latitude for 5=3.8, #=1-~3c2

excellent. Fig. 8a gives the values of o, when b= 3.8 and
#=1—2da? and shows how «, depends on the horizontal
shear 6. Fig. 8b gives the values when #= (1+a?)~%, and
shows how a, depends on the vertical shear 4. For mean
atmospheric conditions, Eq. (3.4) predicts a reversal
in the flux at about 20° latitude, which is consistent
with the observations (Oort and Rasmusson, 1971,
Fig. 23).

4. The vertical eddy heat flux

As one would expect from Eq. (2.19) the distribution
of the vertical eddy heat flux and its dependence on b
and # closely resembles those found in the horizontal

flux. Figs. 9-11 suffice to show this resemblence. They
show w8, normalized to its maximum value, for the
same values of b and # used in Figs. 2, 4 and 6, respec-
tively. The vertical transport is positive near maxima
in 7, negative near minima in 4%, and the regions of
positive transport become larger as one moves away
from neutral stability. The remarks made in the pre-
ceding section about the dependence of 78 on the local

value of the baroclinicity apply equally well to w8.
In Fig. 8 the O’s indicate the location of the zeros in
w8l calculated using Egs. (2.6)-(2.18). Again they are
in excellent agreement with the locations predicted
by Eq. (3.4).

wb
A
+1.0
0.5+
-1.0 -0.5 +0.5 +1.0
e\_/"—\/ \/.}\ : > e
-0.5T

F1c. 10. As in Fig. 9, but for 7= (14a?)~%
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IF1e. 11, As in Fig. 9, but for 2= (14-a?)1and b=3.3.

Since the vertical motions accompanying the baro-
clinic wave are of order of the Rossby number, the
vertical heat transport due to the mean motions gen-
erated by the baroclinic wave are comparable to the
eddy transport, fw. However, mass conservation re-
quires that the mean vertical motions integrated
latitudinally be zero. Comsequently, the latitudinally
averaged vertical heat transport arises solely from the
eddy transport, 6w. In all cases this integrated trans-
port is upward, as it should be for a growing baro-
clinic wave.

5. Parameterization of the eddy heat fluxes

We will start from our earlier parameterization for
the eddy fluxes (Stone, 1972) but without the ad hoc
meridional dependence originally introduced. We will
also simplify the expressions by assuming that the
Richardson number is large compared to unity. The
simplified formulas are

— gH?/ g AO\?
o= —0.144:——(— —)
F*T\T 9z

36|98

) (5.1
dyidy

— g2 H (g 36\ }ad? z
0w=+0.36——<~ —> — z<1———>, (5.2)
PTE\T 9z/ ldy H

where g is the acceleration of gravity, H the scale
height, f the Coriolis parameter, T the temperature,
and z the height above the ground. These expressions
were derived in part by using Eady’s (1949) model of
baroclinic stability, in which H, f, T, 88/9z and 46/9y
are all constant. Consequently, in our earlier work
(Stone, 1972, 1973) f was evaluated at 45° latitude,
values of the other quantities averaged over the whole
troposphere were used, and an ad hoc meridional de-

pendence was introduced. The calculations in Sections
2-4 allowed for meridional variations in 88/9y explicitly
and for variations in f implicitly through the 8-plane
approximation. Thus, we can now introduce modifica-
tions into Eqgs. (5.1) and (5.2) to allow for the varia-
tions of 98/9y and for the B-effect.

Our calculations showed that it is the local value of
7 that matters, and % is related to 98/dy by the thermal
wind relation for the two-level model:

g 90
2 fui= —— —,

(5.3)
T dy

Therefore, we will include the meridional variation of
98/3y by simply re-interpreting 98/9y in Egs. (5.1)
and (5.2). Instead of interpreting it as the mean
tropospheric value of 36/9y, we will now interpret it
as the local value of 94/9y averaged longitudinally and
vertically, with the vertical average being a mass-
weighted average between the ground and the tropo-
pause. Consequently, 33/dy will now be a function of
latitude.

The B-effect is measured by the local value of b,
given by Eq. (3.3). This local value 5’ can be written
in more convenient form by substituting for 4 from
Eq. (5.3) and for L its definition,

H/g 06\}
L=— ————-) . (5.4)
f\T 9z
We obtain
08 a8
b'=—28H— [/ f—. (5.5)
9z dy

If we evaluate both f apd B at 45° latitude then (5.5)
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becomes

2H 90/9z
V= (5.6)
R 06/dy

This expression shows that 4’ is essentially a measure
of the local slope of the isentropes. The critical value
b’=4 corresponds to a slope equal to $H/R. If there
were no B-effect, the critical slope would be zero. This
result suggests that the B-effect may be included in
our parameterization by introducing a critical slope for
the isentropes. ‘

To implement this idea, it is convenient to use the
formalism introduced by Reed and German (1965).
They write the eddy transports in the form

_ a6 = 90
Gv= —K(———I—’?—), (5.7)
dy 0z
_ a0 __ 86
e R i SED
dy Jz

where K is an eddy diffusivity, ¥ the mean slope of the

mixing surfaces in the meridional plane, and 7" the
mean-square standard deviation of the slope. Analogous
expressions describe the eddy transports for any con-
servative quantity. Green (1970) used a similar formula-
tion for the eddy transports of heat by large-scale
eddies, but he implicitly assumed that ¢/2>¥% This
assumption can be rationalized if the large-scale eddies
which cause mixing do indeed arise from baroclinic
instability. Stability theory indicates that one par-
ticular slope is favored for the mixing surfaces, and
other slopes cannot compete effectively because of the
exponential differential growth of the eddies with differ-
ent mixing slopes. This implies that y2<?. The same
conclusion is suggested by the sharp peak in atmospheric
wavenumber spectra of the meridional velocity (Kao
and Wendell, 1970). In any case we too will assume that
the eddies are generated in such a way that Ty—'_2-<<')72.
With this assumption ¥ and K can be found from
any parameterization for 0 and w8, and used to de-

scribe the eddy diffusion of any conservative property.
From Eqgs. (5.7) and (5.8) we have

0w
ov
Substituting from Egs. (5.1) and (5.2), we find
5z z\06/9dy
F=—= —<1——> —, (5.10)
2H H/36/3z

This is the mixing slope predicted by Eady’s model, in
the long-wave limit. It has a maximum equal to § of the
isentropic slope, and it goes to zero at the top and
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bottom of Eady’s Boussinesq atmosphere, because of
the rigid boundaries placed there. It would be more
realistic to place the upper rigid boundary at the
tropopause than one scale height above the ground,
so we will replace H in Eq. (5.10) by 27z, the height of
the tropopause. Substituting Egs. (5.10) and (5.1) into

(5.7), we find
,/ [“52;(1‘53]

(5.11)

K= 0144gH2<— —>
T 9z

Since the slope of the isentropes directly determines
7, but not K, we will introduce the critical isentropic
slope by modifying . In particular, we will replace

(5.10) by
5z 2\06/dy
7= L(1-= =),
2 z2p 27/ 86/9z

and choose F(b') to satisfy the following criteria:

(5.12)

1) F(0)=1, so ¥ reduces to the form derived using
Eady’s model when 8=0.

2) Jo°T v8dz=0 when & =4, so that the mean fluxes
change sign at the critical isentropic slope determined
from the two-layer model.

3) F is a symmetric function of &', since the stability
of the zonal flow does not depend on the sign of &’.

The simplest function satisfying these criteria is
F(p')=140.283]%'|. (5.13) -

Substituting (5.13) and (5.6) into (5.12), we find for
the modified mixing slope

598/0 H 06/dy 2 3z
S LT T
R |36/3y|4zr 37

Y= T2
2 96/3z
The modified form of the meridional flux is now found
by substituting (5.11) and (5.14) into (5.7). We obtain
_ —0.144gH?/ g aB\}
(e
T T 9z

b4 z
| 1.42—( 1——) )
001196 27 27 H 06
l— (5.15)

Sz 2 E:?; ’
)

2 zp 27
Eq. (5.15) can be put in a computationally simpler

form if we: 1) substitute for H its definition,

R,T

2 |

: - (5.16)
g

where R, is the gas constant; 2) replace 98/9z by the
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JANUARY

I'16. 12. Tropospheric meridional eddy flux for January. The X’s indicate
Oort and Rasmusson’s (1971) data.

derivative of 8 with respect to the pressure p assuming
hydrostatic equilibrium and a perfect gas,

—=— (5.17)

and 3) replace 48/9y By the latitudinal gradient,
a6 1 90

—_—=— 5.18
dy R d¢ G-18)
Eq. (5.15) then becomes
_ Ro / 106|\I[| 90 D
o= —0.144——<p — > [ — +h(z)p—:|, (5.19)
R\ lap 9¢ 9p
where
x(1—x)
hz)=142— e x=— (5.20)
1—5x(1—x) zr

In (5.19) Ry, R and f are all constants; p(36/dp) is still
taken to be the mass-weighted tropospheric value of

$(96/8p) (neither Eady’s model nor the two-level model
allow variations in the static stability); 96/9¢ is now
a function of latitude only; and /4 is a function of height
and of latitude (through 7).

In order to check the validity of Eq. (5.19) we used

it to calculate fv from the distributions of 8 given by
Oort and Rasmusson (1971) for the Northern Hemi-
sphere. The following values for the constants were
adopted: Re=2.9X10¢ ergs (°K)~! gm™1, R=6370 km,
and f (at 45° latitude) =1.03X10~* sec™. The merid-
ional flux calculated from the mean January distribu-
tion of 8 is illustrated in Fig. 12. This figure shows the

vertically averaged (mass-weighted) values of fv for

the troposphere as a function of latitude. The mass-
weighted tropospheric value of p(96/3p) was —36C.
Observational values of 6v averaged in the same way
were calculated from Qort and Rasmusson’s (1971) data
for the eddy transports of sensible heat and potential
energy. These observed values are shown as X’s in Fig.
12 and in all subsequent figures. The parameterization
gives reasonably accurate values for the flux maximum
and for the latitude of the reversal in the flux in low
latitudes. However, the flux maximum is located 15°
too far south. In the parameterization this maximum
is always located where the horizontal temperature
gradient is a maximum. Evidently in the atmosphere
the maximum in the flux is not tied so closely to the
maximum in the temperature gradient.

Fig. 13 illustrates the vertical dependence of the
meridional flux at 40N in January calculated from (5.19).
The vertical dependence agrees reasonably well with
the observations, showing two maxima in the flux, one
near the ground and one near the tropopause. Appar-
ently this double maximum can be explained by the
leveling-off of the mixing surfaces near the ground and
the tropopause [cf. Eq. (5.14)]. The parameterization
misses the decrease of the flux in the boundary layer,
because the boundary layer was neglected in both of
the stability models used in deriving the parameteriza-
tion. Also the parameterization gives poor results in
the stratosphere. This defect can be traced to the
neglect of the vertical variations of baroclinicity and
static stability in both Eady’s model and the two-level
model.

The parameterization can also be compared with the
horizontal eddy fluxes found in three-dimensional gen-
eral circulation models (GCM’s). Three groups of in-
vestigators have used GCM’s for simulating January
conditions, and have published values of the meridional
eddy flux of sensible heat generated by their models—
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F1c. 13. Meridional flux as a function of pressure at 40N in January.
The X’s indicate Oort and Rasmusson’s data.

the GFDL group (Holloway and Manabe, 1971, Fig.
27), the GISS group (Sommerville ef al., 1974, Fig. 26),
and the NCAR group (Kasahara et al., 1973, Fig. 10).
The NCAR calculations used a 12-level model, while
the GFDL and GISS calculations uised 9-level models.
The GCM’s and the parameterization give comparable
results for the locations of the flux reversal and the
double maximum in the poleward flux, but the GCM’s

the parameterization give comparable results. The

“error quoted for the observed maximum corresponds

to the standard deviation arising from inter-annual
variations [ see Fig. E4 of Oort and Rasmusson (1971)].

The vertically averaged values of_éa calculated from
Eq. (5.19) for July mean values of 8 are shown in Fig.

TasLE 1. Comparison of maximum values of January meridional

do better in locating the flux maximum. They all locate heat flux 2.
it at about 45N, only 3° south of the observed location.
The one factor that is included in all the GCM’s but Model Relative value
not in the stability analyses used as the basis for the Observed 1.0401
parameterization which could plausibly account for GFDL 0.
this difference is curvature effects. Table 1 compares gES:R g;
the maximum values for the meridional flux in January Eq. (5.19) 1.1
given by the different models. Again the GCM’s and
ﬁ (m/sec °C)
3
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F16. 14. As in Fig.

12, but for July.
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14, together with Oort and Rasmusson’s observed
values. The vertical variations in July are illustrated
in Fig. 15. For July the mass-weighted tropospheric
value of p(30/dp) was —38C. The small seasonal
variability of this quantity and the small changes in it
found in our earlier investigation of the effects of
climatic change (Stone, 1973) indicate that this
quantity may be taken to be a constant for most
purposes. The July observations do not provide as good
a check of the parameterization as the January observa-
tions, since the standard deviation in the observations
is larger in July than in January. Nevertheless, the
July comparison essentially verifies the conclusions
reached about the parameterization from the January
comparison. Most importantly, the parameterization
reproduces accurately the seasonal change in the mag-
nitude of the flux.

The vertical eddy flux 6w is obtained by multiplying

¥ [Eq. (5.14)], by v [Eq. (5.15)]. Since there are no
observations of the vertical eddy flux available, it is not
possible to check this parameterization the way we
checked that for the meridional flux. Previously (Stone,
1973) we showed that the magnitude of the vertical
flux predicted by Eq. (5.2) agrees with Palmén and
Newton’s (1969) rough estimate of the flux in winter
north of 32° latitude. This rough check also holds for
values of the flux calculated using the modified form of
¥ since in winter north of 32°- the modifications we
introduced are not large.

Finally, it is worth pointing out that the viability of
our parameterization is not strongly dependent on the
mechanistic approach we used to derive it. There are
two crucial assumptions involved (cf. Stone, 1972).
The first is that the slope of the mixing surfaces are
given correctly by baroclinic stability theory. These
slopes are likely to be correct even if the eddies are not
generated by baroclinic instability, since they represent
the slopes along which it is easiest for displacements
to occur—i.e., the slopes along which a minimum
amount of work is done against gravity. The second
assumption is that the growth of the eddies is limited
by nonlinear effects, so that there is an equipartition
between the mean zonal kinetic energy and the total
eddy kinetic energy. This assumption can hold regard-
less of how the eddies arise. In fact, in winter months
the dominant contribution to the total eddy flux is by
the stationary eddies (Qort and Rasmusson, 1971,
Tables C7a and C7b), and these probably arise from
topographical and diabatic heating effects rather than
from baroclinic instability (Derome and Wiin-Nielsen,
1971). Nevertheless, our parameterization gave good
results for the total eddy transport in January.

6. Summary

"The calculations of the eddy fluxes of sensible heat in
Sections 3 and 4 show the importance of local baro-
clinicity in determining the direction of the fluxes. In
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regions where &' <4 the slope of the isentropes exceeds
the critical value and heat is transported poleward
and upward. In regions where 8 >4 the slope of the
isentropes is less than the critical value and heat is
transported equatorward and downward. This result
agrees with the observed reversal in the meridional
eddy flux in low latitudes. Observations in high latitudes
are not yet adequate for determining whether a similar
reversal occurs there. The existence of such a reversal
would have important climatological implications. It
would mean that the negative feedback between the
mean temperature field and the eddy fluxes in mid-
latitudes becomes a positive feedback in high latitudes,
and the polar regions would be more susceptible to
climatic change on this account.

The comparison between the eddy flux parameteriza-
tion and the observations in Section 5 indicates that
itis feasible to use zonal average models with parameter-
izations of the eddy processes in order to study clima-
tological problems. In particular, using the parameter-
izations of the eddy sensible heat fluxes presented in
Section 5, one can model the magnitude and sign of the
tropospheric fluxes and their vertical variations and
seasonal changes. The eddy fluxes of other conservative
quantities can be modeled with comparable accuracy
by using the same values for the eddy diffusion coeffi-
cient and the slope of the mixing surface. The meridional
eddy flux of momentum can be calculated from the
fluxes of sensible heat and potential vorticity by using
Green’s (1970) prescription.

The one notable defect in the parameterization is the
location of the maximum poleward flux. An analysis
of the baroclinic stability problem with curvature
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effects included might supply the insight necessary
to correct this defect. It also might be possible to ex-
tend the parameterization ‘to the stratosphere by
analyzing a model of baroclinic stability which included
vertical variations in the baroclinicity and the static
stability.
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